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Explicit codes are often used to simulate the nonlinear dynamics of large-scale

structural systems, even for low frequency response, because the storage and CPU re-

quirements entailed by the repeated factorizations traditionally found in implicit codes

rapidly overwhelm the available computing resources. With the advent of parallel pro-

cessing, this trend is accelerating because explicit schemes are also easier to paraJlelize

than implicit ones. However, the time step restriction imposed by the Courant stabil-

ity condition on all explicit schemes cannot yet -- and perhaps will never -- be offset

by the speed of parallel hardware. Therefore, it is essential to develop efficient and

robust alternatives to direct methods that are also amenable to massively parallel pro-

cessing because implicit codes using unconditionally stable time-integration algorithms

are computationally more efficient when simulating low-frequency dynamics. Here we

present a domain decomposition method for implicit schemes that requires significantly

less storage than factorization algorithms, that is several times faster than other popular

direct and iterative methods, that can be easily implemented on both shared and local

memory parallel processors, and that is both computationally and communication-wise

efficient. The proposed transient domain decomposition method is an extension of the

method of Finite Element Tearing and Interconnecting (FETI) developed by Farhat

and Roux for the solution of static problems. Serial and parallel performance results

on the CRAY Y-MP/8 and the iPSC-860/128 systems are reported and analyzed for

realistic structural dynamics problems. These results establish the superiority of the

FETI method over both the serial/parallel conjugate gradient algorithm with diagonal
scaling and the serial/parallel direct method, and contrast the computational power of

the iPSC-860/128 parallel processor with that of the CRAY Y-MP/8 system.



1. Introduction

Nonlinear transient finite element problems in structural mechanics are char-

acterized by the semi-discrete equations of dynamic equilibrium:

Mii + f/"t(u, p_,O) = ff _t (i)

where M is the mass matrix, u is the vector of nodal displacements, a dot su-

perscript indicates a time derivative, f_n* is the vector of internal nodal forces,

Pc denotes a set of control parameters, _ is a function of past history of the

generalized deformation gradients, and ff_t is the vector of external nodal forces.

The solution of Eq. (1) via an implicit time-integration methodology generates a

nonlinear algebraic system of equations at each time step. The Newton-Raphson

method and its numerous variants collectively known as "Newton-like" methods

are the most popular strategies for solving the resulting nonlinear problem. All

of these algorithms require the solution of a linear algebraic system of equations

of the form:
_t, (k), A (k+l) (k)

_,Un-t-1) /-.XUnq- 1 : r(Un+l)

where (2)

AU(711) • (k-t-l) • (k)= --n+l -- --n_-i

and where the subscript n refers to the n-th time step, the superscript k refers
Nt

to the k-th nonlinear iteration within the current time step, K is a symmet-

ric positive approximate tangent matrix that includes both mass and stiffness
(k+l) (_)

r(u.+l) arecontributions, and _un+ 1 and respectively the vector of nodal dis-

placement increments and the vector of out-of-balance nodal forces (dynamic

residuals). Most if not all finite element production codes use a direct method --

that is, a method based on a factorization scheme -- for solving the linearized

problem (2). However, for large-scale three-dimensional structural problems, di-

rect solvers entail memory and CPU requirements that rapidly overwhelm the

largest of the computing resources that are currently available. As a result, even

low frequency dynamics problems are often solved with explicit codes in order

to avoid the extreme demands plazed on computer resources by the repeated

factorizations found in implicit time-integration methodologies. This issue has

been well addressed by Hughes, Ferencz and Hallquist [1] who have proposed the

well celebrated Element-By-Element (EBE) Preconditioned Conjugate Gradient

(PCG) algorithm (see also Hughes, Levit and Winget [2]) as a means to allevi-

ate the difficulties associated with direct solution methods. Moreover, with the

advent of parallel processing, the popularity of explicit schemes and iterative solu-

tion strategies has been rapidly increasing (see, for example, Hajjar and Abel [3],



Farhat, Sobhand Park [4],Belytschko,Plaskacz,Kennedyand Greenwell [5], and
Biffie [6]) becausethesemethodologies(a) are easierto parallelize than implicit
schemesand direct solvers,and (b) they usually induceshort rangeinterprocessor
communications that are relatively inexpensive,while the factorization methods
used in most implicit schemesinduce long range interprocessorcommunications
that often ruin the sought-after speed-up. However, the time step restriction
imposed by the Courant stability condition on all explicit schemescannot yet
-- and perhaps will never -- be offset by the speedof parallel hardware, and
many iterative solversoften fail when applied to systemsarising from the analy-
sis of large-scaleflexible structures. Therefore, it is essentialto develop efficient
and robust alternatives to direct methods that are also amenable to massively
parallel processing,becauseunconditionally stable implicit schemesare compu-
tationally more efficient than explicit time-integration methodologies at simu-
lating low-frequency dynamics. The EBE/PCG algorithm developedby Hughes
and his co-workers [1, 2] is such an alternative which additionally utilizes the
structure inherent in finite element formulations and implementations. Here, we
proposeanother alternative which is driven by substructuring conceptsand which
achievesa greater improvementover the CG algorithm with diagonal scaling than
reported in [1] for the EBE/PCG scheme. However, unlike EBE methods, the
proposed methodology requires the assemblyand factorization of substructure
level matrices and therefore requiresmore storage than the EBE/PCG solution
algorithm.

A good balancebetweendirect and iterative solution algorithms is provided
by Domain Decomposition (DD) methods which usually blend both of theseso-
lution strategies. A well designedDD method requires lessstorage than direct
solversand convergesfaster than other purely iterative algorithms whenapplied to
highly ill-conditioned systems(see,for example, the collection of paperscompiled
in [7]). Moreover,in their simplest form, DD methodshave an explicit character
becausethey effectivelyshareinformation only betweenneighboring subdomains,
which makes them very attractive for parallel processing.The method of Finite
Element Tearingand Interconnecting (FETI) is aDD algorithm basedon a hybrid
variational principle that wasdevelopedby Farhat and Roux [8] for the parallel
solution of self-adjoint elliptic partial differential equations. It combinesa direct
solver for computing the incomplete subdomain displacementfields with a PCG
algorithm for extracting the dual tractions at the subdomain interfaces. This
method wasshownto outperform direct solverson both serial and coarse-grained
multiprocessors such as the CRAY Y-MP/8 system, and to compare favorably
with other DD algorithms on a 32 processor iPSC-2 (Farhat and Roux [9]). In this

paper, we present an extension of the FETI methodology to structural dynamics



problems. In particular, we construct two subdomaln-by-subdomain precondi-

tioners for the interface problem which have direct mechanical interpretations.

We mathematically discuss their computational properties and numerically as-

sess their relative performances. We also report on some recent developments in

the FETI process pertaining to global residual estimators, loss of orthogonality,

and numerical scalability with respect to the mesh and subdomain sizes. Finally,

we analyze some serial and parallel performance results obtained on the CRAY

Y-MP/8 and the iPSC-860/128 parallel processors -- which are representative

of today's two extreme parallel architectures -- for all of the transient FETI

method, a parallel active column direct solver, and a parallel implementation of

the CG algorithm with diagonal scaling. These performance results show that all

of the mentioned parallel algorithms exhibit a different type of bottleneck, but

in most cases, the FETI method is shown to significantly outperform both the

parallel CG algorithm with diagonal scaling and the parallel direct solver.

2. A transient FETI methodology

2.1. Tearing and interconnecting

Let _2 denote the volume of the structure to be analyzed and ,f_-_s]s=Not ls=l

denote a partitioning (tearing) of ft into N, substructures or subdomains. We

denote by F_ and F_ 'q, respectively, the portion of the boundary of f/" where

surface tractions {5 are prescribed, mad the interface boundary between ft _ and a

neighboring ftq. A weak form of the equations that govern the dynamic undamped

response of the global structure can be written in a subdomain-by-subdomain
form as:

(s = 1,...,N_)

(3)

subject to the inter-substructure continuity constraints:

s=N_ ,q=N_

u8 = uq; = = on U (4)
s=l,q=l

In Eqs. (3) and (4) above, the superscripts _ and q refer to f_ and ftq, re-

spectively, a dot indicates a derivative with respect to time, a s and E _ axe the



stress and strain tensors,pS is the mass density, u is the displacement field, f is

the forcing field, and As,q is a Lagrange multiplier function which represents the

interface tractions that maintain equilibrium between f_s and a neighboring Qq

(interconnecting). The first of the inter-substructure continuity constraints (Eqs.

(4)) can be dualized as:

6 ',q(us - uq) = (5)dP 0

If the original mesh of the global structure does not contain incompatible ele-

ments, the subdomains .f_sis=N.t Js=l are guaranteed to have compatible interfaces

since these subdomains are obtained by partitioning the global mesh into N,

submeshes. Therefore, we assume in the sequel that discrete Lagrange multipli-

ers are introduced at the subdomain interfaces to enforce the inter-substructure

displacement continuity. The piece-wise continuous approximation of the La-

grange multipliers As,q in Eq. (5) is treated in Farhat and Geradin [10] for static

problems. Using a standard Galerkin procedure where the displacement field is

approximated by suitable shape functions as:

u s = Nu s (6)

and linearizing the equations of dynamic equilibrium around Un+l, Eqs. (3) and

(5) are transformed into the following algebraic system:

MS- ..s (k+l) TIt*-- s(h+l) s(/0 ]:_sT]L(k+I)
/kUn-t- 1 JI- IX /_,Unq_ 1 = rn+l -- _-" "'n+l

s_ N8

E nsA s (_+1)1:_ /XUn_l_ 1 _ 0

s=l, ..., N8

8=1

(7)
where the superscript T indicates a transpose, M s and K t° are respectively the

.... ,,. , . A s(_+l) . s (k)
subdomain mass and tangent stmness ma_rlces, z.xu,+l ana rn+ 1 axe respec-

tively the subdomain vector of nodal displacement increments mad the subdo-

main vector of out-of-balance nodal forces, B 8 is a boolean matrix that describes

how _s is connected to the global interface, and -',+1 is the vector of Lagrange

multiplier unknowns at iteration k + 1 and step n + 1. For linear elastostatic

problems, Eqs. (7) above corresponds to the discretization of a saddle-point vari-

ational principle whose mathematical and computational properties are analyzed

in Farhat and Roux [8, 9].



2.2. Time integration

The linearized subdomain equations of equilibrium (7) can be rewritten in

compact form as:

[_ 0 I [" A "(k-I-I)] [_t _0T] rA (k-}-l)] ]

0 |z_u.+l |_U.+l
= [r(_ 10 | i(_+,) + | x(k+_)

L ""n-+l L "'_n+l

where

= block diagonal[M 0) ... M (N')]

_t = block diagonal[K *(1) ... K *(N')]

= [B ... B(N.)]

A (k+l) [Aul(_+I) . N (_+1) ]TUn+l _ L n+l "'" /_'Un+ 1

r(k) r 1 (k) N(k) ]Tn+l -_ Lrn+l "- rn+l

(s)

--A (k+l)
In a companion paper [11], we show that the constraint equation B /XUn+ 1 -- 0

introduces a destabilizing effect in the system that can be analyzed by inves-

tigating the behavior of the time-integration algorithm at infinity. In par-

ticular, we prove that the Newmark integrator without numerical dissipation

(/3 = 1/4, 7 = 1/2) presents a weak instability which is excited for any time

step value. We also show that the Newmark-/3 damping scheme stabilizes the

integration but at the cost of reducing the accuracy to only first order. Finally,

we describe in [11] three implicit time-integration algorithms for integrating Eqs.

(8) that are unconditionally stable and second-order accurate. These algorithms

are:

(A1).

(A2).

(A3).

A substructure version of the Hilber-Hughes-Taylor [12] algorithm with

a < 0. The numerical dissipation of this second-order accurate algo-

rithm is shown to cure the weak instability caused by the constraints.

A substructure version of the Newmark integrator without numerical

dissipation (/3 = 1/4, 7 = 1/2) but with a constraint on the substructure

acceleration increments B Aii(nk+l 1) = 0, rather than the substructure

displacement increments. In particular, we show in [11] that the latter

constraint does not cause the inter-substructure displacement constraint

to drift away.

A substructure version of the Newmark integrator without numerical

dissipation (/3 = 1/4, 7 = 1/2) and with a constraint on the substruc-
-- A- (k+l)

ture displacement increments B ...,u,+ 1 = 0, but written in terms
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of the displacement field increment A-U?:I 1) and the momentum incre-

-- (k+a) = _ A-(k+l)ment _v,+ 1 _u,_+l . The latter algorithm possesses desirable

features for reducing round-off error propagation.

Here, we select the time-integration algorithm (A3) and summarize it in

order to keep this paper self-contained. Let Av(_+_ ) denote the momentum in-

crement at iteration k + 1 and at the midpoint between steps n and n + 1:

s(k+ l) . s(I,+1)
The midpoint subdomain increments axun+ 5 and zav+½
follows:

x s(k+x) At . .s(_+l)

u+__ = 5-/Xu+5

Vn+ 5 -- _/-AV n- x2 -r_

are integrated as

(10)

where At is the time step. Substituting Eqs. (10) into the dynamic equations of

1 leads to:subdomaln equilibrium (7) written at the midpoint step n +

AvS(,+,) 2 M_Au_++,, (11)"+5 - At

and

At2 t" - s (k+l)

(M s + -T-K )A,,.+ 5
8_ g s

E
s---_l

At2, s(_> l(k+l)_
= --_--(r +½ - Bet., +5 j

BaA s(k+l)
_u.+½ = 0

s (_+1) _ U s(_) AuS(k+l)%+½ "+5 + "+½

s ----1, ..., N,

(12)

After Eqs. (12) are repeatedly solved for all nonlinear increments, u_,+_ is found
and the time derivative of each subdomaln momentum can be obtained via back-

substitution in Eq. (1) as:

9_'+5 _+5 B_rA"+½ f""'= °" - - (u_,+½,pc,0) (13)

Finally, the subdomain solutions are advanced as follows:

u * _,.+1 = 2u +3 ÷u"

= v _ Atgs 1
v_.+l .+__+ _- .+_

(14)
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_(k+l)
REMARK 2.2.1. Since the solution ,,+½ of Eqs. (12) will contain round-off

s=N, lclsr ]k(k+l)

errors, we implicitly invoke the equilibrium condition _ _ "'n+½ = 0 and

directly compute the momentum increment in assembled form as:

= en::½- e"'(u.+½,po,0) (15)

Therefore, our actual code utilizes Eq. (15) rather than Eq. (13).

The above subdomain-by-subdomain time-integration algorithm is second-

order accurate and unconditionally stable (see [11] for a proof). Its computational

cost is dominated by the solution of Eqs. (12) which can be reduced to the

following interface problem:

__ ,_1(k+1) _
('=/v°E BS(MS+ At24 Kt')-IB 8rj.,.+½ _

s=N. m_2 -t',-1 s (tO

E B'(M'+_K ) r +½ (16)4

For large problems and fine mesh decompositions, it is not feasible to explicitly

assemble the interface operator:

_t

F I -

s=N, At2 t* 1 s T

E B'(M_+--_--K )- B (17)
$=1

whose size is equal to the total number of degrees of freedom on the subdomain

interfaces. This implies that a direct method is not attractive to solve Eq. (16).

The only efficient numerical method for solving Eq. (16) is that of conjugate
At 2 lct° _ls=N_

gradients because once {(M s + --T-'" /Js=l have been factored in parallel,
_t

matrix-vector products of the form F/x can be efficiently performed using only

parallel subdomain-by-subdomain forward and backward substitutions.

The remainder of this paper focuses on the parallel solution of Eq. (16) via

the PCG algorithm.

3. Spectral properties of the interface problem

s= N,

The interface matrix _ BSK t°-t B sr corresponds to the discretization of
a=l

a compact operator which maps the normal components of the stress tensor along

the subdomain interfaces, onto the traces on these interfaces of the corresponding

8



subdomain displacement fields. Recently, Roux [13] has shown that because of
$_ N_

this compactness, the eigenvalues of the matrix _ BSK t°-I B 8T are well sep-
s----1

arated and have a higher density towards the low end of their spectrum. For a

8=Y. at 2K t" )-i B sr has similar eigen prop-fixed At, we can show that _ B8( M8 + -T-
s----1

erties. The objectives of this section are: (a) to numerically illustrate the spectral

8=N, __2 Kt,)_ 1 sTproperties of the transient interface operator _ BS(M 8 + -- B , and

(b) to highlight the impact of these spectral properties on the convergence rate

of the CG algorithm.

Consider the three-dimensional two-subdomain cantilever problem depicted

in FIG. 1. The beam has a square cross section and a 10/1 length/height aspect

ratio. Two finite element meshes are constructed using 8-node brick elements.

The first mesh, M1, contains 2400 internal degrees of freedom (d.o.f.) and 192

interface d.o.f. The second mesh, M2, is finer: it contains 16320 internal d.o.f.

and 672 interface d.o.f.

FIG. 1 A three-dimensional cantilever problem

9



_t

The eigenvalues of the transient interface operator F z (17) associated with the

above problem are computed using a consistent mass formulation and a time step

equal to one tenth of the sixth period of the structure. The distribution of these

eigenvalues is depicted in FIG. 2 for mesh A'/1, and in FIG. 3 for mesh -_f2.

*w t

*,10÷

3D cantilever problem

Mesh M1

_t

FIG. 2 Spectral density o/F z/or mesh M1

4eQt

y,o_

_t

_t

3D cantilever problem

Mesh M2

14

; .... ,,,;;;;',:::::'':::',:::::_:::',',::',:_',:::_',_:_-::I::',',',', -_',:'r:`l

0 3 $ 7 9 11 13 15 17 _'9'21 23 25 27 29 31 33 35 37 39 41 43 ,_5 a7 49 5t 53 55 57 5"_

Scaled eigenvalu8 tan_e

_t

FIG. 3 Spectral density of F _ for mesh M_
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The x axis of the bar diagrams depicted in FIG. 2-3 represents the eigenvalues

sealed by the smallest eigenvalue, and the y axis the number of eigenvalues per
_t

interval. For both meshes, F I is shown to have a few large eigenvalues that

are well separated from the small ones. Figure 3 suggests that this separation

amplifies when the mesh size h --_ 0. Indeed, one can mathematically prove that
_t

the large eigenvalues of F I stabilize when the mesh size decreases, while its small
_t

eigenvalues accumulate towards zero. Essentially, this is because F I involves

the inverses of the pencils (M s, K t" ) and therefore its high modes correspond to

physical modes while its low modes correspond to mesh modes.

The spectral distribution of the interface problem associated with the FETI

methodology has important consequences on the rate of convergence of the CG

algorithm. During the first iterations, the conjugate gradient algorithm mostly

captures the eigenvectors associated with the large eigenvalues. Since the high
_t

numerical modes of F I correspond to the low physical modes of the structure and
Nt

since F I has only a few relatively high eigenvalues, the CG algorithm applied to

the solution of Eq. (16) quickly gives a good approximation of the displacement

increments. Intuitively, one can imagine that after the few relatively high modes
_t

of the interface operator are captured, the "effective" condition number of F I

-- that is the ratio of its largest uncaptured eigenvalue over its smallest one --
Nt

becomes significantly smaller than the original condition number of FI, which

accelerates the convergence of the CG algorithm. A detailed analysis of this

supercortvergenee behavior of the CG algorithm in the presence of well separated

eigenvalues can be found in the work of van der Luis and van der Vorst [14].

_t

The impact of the spectral distribution of the transient interface operator F I

on the convergence rate of the CG algorithm is highlighted in TABLE 1 which

reports the number of iterations to achieve convergence for the FETI methodol-

ogy described in this paper and for the classical Schur complement method. The

transient interface operator resulting from the latter DD method (static conden-
_t _t _t

sation) is denoted here by S{. While both Fx and S/are shown to have identical

two-norm condition numbers (_2(Ft/) -t _t= _:(Si)), the CG algorithm applied to F x
Nt

is shown to converge twice as fast as when applied to S 1. This clearly demon-

strates that conditioning is not always the only factor governing the convergence

rate of the CG algorithm.

11



TABLE 1

Three-dimensional two-subdomain cantilever problem

Mesh MI: 2400 internal d.o.f- 192 interface d.o.f.

Mesh M2:16320 internal d.o.f- 672 interface d.o.f.

Rtql(k) _ AU(_+1) r/u(k) _,,
Convergence criterion: " _ .+t) .+1 - _ .+tJII2 < 10_ 4

(h)
IIr(u.+_)ll_

_t Nt

mesh _2(FI) _2(SI) # of iterations

(CG-FETI)

# of iterations

(CG-Schur)

M1 58.0 58.0 14 25

M2 55.2 55.2 14 33

l

_t

Another important consequence of the spectral distribution of F I is that, for

a fixed mesh partition, the rate of convergence of CG applied to the solution of

Eq. (17) is weakly dependent on h, even though the condition number of FtI varies

as O(1/h). This is because once the few h-dependent high eigenvalues of Ft I have

been captured, the superconvergence phenomenon "kicks-in" independently of h.

This is clearly demonstrated in TABLE 1 where the CG-FETI algorithm is shown

to converge with the same number of iterations for both the coarse mesh M1 and

the fine mesh M2. Similar results are reported in TABLE 2 for a four-subdomain

bending plate problem. The plate is clamped at one end and subjected to a

uniform pressure (FIG. 4). It is discretized with 4-node shell elements and with a

consistent mass formulation. The time step is set to one tenth of the sixth period
of the structure.

12



FIG. 4 A four-subdomain bending plate problem

TABLE 2

Four-subdomain bending plate problem

Discretization: N x N where N - 1

Algorithm: CG-FETI

Convergence criterion: IIK'tn(k) _ Au("k++')-r((_),-°+,, U.+l)ll < 10_4
iir(u(_l)ll2

h # of d.o.f. # of interface d.o.f. # of iterations

605 55 43
10

1 2205 105 54
20

1_ 8405 205 74
40

A_ 32805 405 75
80

1_.!__ 129605 805 75
160

13



All of the above results confirm that for all practical purposes and for a fixed

mesh partition, the rate of convergence of the CG algorithm applied to the so-

lution of the interface problem associated with the transient FETI methodology

can be considered independent of the mesh size h. We refer to this important

property as the numerical h scalability of the FETI methodology, where "numer-

ical" is used to differentiate from the well-established parallel scalability of the

proposed computational method, and the "h" is used to remind the reader that

this result is valid for a fixed mesh partition.

4. Preconditioning with a trace operator

4.1. Sum of the projections of the inverses

s_gs

__ At 2 t _ --1 8 TBecause the interface operator _t _ BS(M" + -q-K ) B essen-

tially assembles the projections on the subdomaln interfaces of the inverses of the

subdomain transient operators (M s + -_---_2Kt"), it is attractive to consider the

following subdomaln-by-subdomain parallel preconditioner:

_t- 1 s=No At 2 t °

TI = _ BS(M s + --_--K )B "T (18)

which essentially assembles the projections on the subdomaln interfaces of the

independent subdomaln transient operators (M s + -_--_2Kt°) themselves. How-

ever, we have found that for many static problems the static equivalent of the

above preconditioner did not much improve the condition number of the interface

problem (Farhat and Roux [8]), and in some cases, it slightly degraded it (Roux

[13]). It has also been suggested to us (Mandel [15]) that the condition num-
Nt -1 _t _t -t

ber of T t F z still varies as O(1/h), which should not make T I an attractive

preconditioner. Yet, we have recently reported on an extensive set of numerical
_t-1

results for realistic structural problems where the static equivalent of T_r was

shown to significantly improve the convergence rate of the CG algorithm for static

problems (see for example Farhat and Roux [8, 9, 16] and Farhat, Felippa and

Militello [17]). All of these observations can be reconciled within the theory of

"superconvergence" discussed in Section 3. For this purpose, we consider again

the two-subdomaln cantilever problem depicted in FIG. 1. The distribution of the
Nt -1 _t

eigenvalues of its T I F z operator computed using a consistent mass formulation

and a time step equal to one tenth of the sixth period of the structure is depicted

in FIG. 5 for mesh M2.

14



1 3 5

3D cantilever problem
Mesh M2

? 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59

Scaled eigenvalue range

_t -1 _t

FIG. 5 Spectral density of T I F I for mesh 2_I2

t--1

By comparing FIG. 3 and FIG. 5, the reader can observe that T_r essentially

amplifies the separation between the clusters of small and large eigenvalues of

the interface problem, which accelerates the convergence of the CG algorithm.

Following the reasoning outlined in Section 3, the reader can also conclude from

FIG. 3 and FIG. 5 that after the few large eigenvalues of the interface problem
t-1 _t

are captured, the "effective" condition number of T x F i is much smaller than

that of F 1. This "superconvergence" behavior is highlighted in TABLE 3 below

for the three-dimensional two-subdomain cantilever problem.

15



TABLE 3

Three-dimensional two-_ubdomain cantilever problem

Mesh MI: 2400 internal d.o.f- 192 interface d.o.f.

Mesh M2:16320 internal d.o.f- 672 interface d.o.f.

Algorithm: CG-FETI

Convergence criterion: IIK'ru(k) _ ex"(k+X)-reu(k), ,+1, -,+1 , ,+1,112
iir(u_OiI z -< 10 -4

mesh # of iterations (Ftr) # of iterations (Tz Fz)

Ma 14 6

M2 14 6

4.2 Mechanical interpretation and parallelism

t--1

At each step q of the PCG algorithm, the preconditioning phase using T I

can be written as:

Nt

Solve T lZq = rq

where

s_ Ns

rq = Z _sq

s=N, At 2 )-1 (rS_)½ Bsr"n+-_ != _ B_(M _ + _____.K t" _ X(k+l)q_

(19)

and the solution of Eq. (19) can be written as:

8-m-Ns

^ "Z'x_2t" s r
zq = Z B'(M8 +--T -K )B tsq (20)

The q-th residual _q corresponds to the jump of the displacement increments

across the subdomain interfaces (see Section 7.1.). Clearly, the above precon-

ditioner is intrinsically parallel as it involves only subdomain-by-subdomain in-

dependent computations. Moreover, it is economical because it only requires
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matrix-vector products of sizes equal to the subdomain interfaces. From a me-

cha.nical viewpoint, solving Eq. (19) corresponds to finding a set of "equivalent"

interface forces that can reproduce the imposed jump of the displacement incre-

ments. Therefore, the problem described by Eq. (20) is indeed an approximate

inverse of the interface problem.

5. Preconditionig with a dual operator

5.1 Sum of the exact inverses

A better approximation of F I can be obtained by approximating the inverse

of the sum by the sum of the exact inverses -- that is, by assuming that:

s= Nm

s=N. At2 )-1 ]-1 At2 Kt')-IBsT]-I (21)
[E BS(MS+-'4 --Ke BSr _ E[BS(M_+ 4

s----1 s=l

which leads to the following preconditioner:

Dx-t-' = _=N,E [B'(M_ + --4-At2Kt' )-lB'r]-I (22)
s=l

If the subdomain mass and stiffness matrices and the subdomain displacement

field axe partitioned as:

where the subscripts i and b respectively refer to the internal and interface bound-

axy degrees of freedom, the inverse of (M_ +-_K e ) can be written as the solution

of the partitioned matrix equations:

[, .] [ ]Mii + --U---ii Mib _- --4--J'_ib Aii " Aib = I 0

Mib + --C,,_ib M_b +
(23)

which yields:

A_b =
2 /k_2A_ At AS

a"_2 s _ 12"s xTrA/fs . Ids _-l/_,as _..._ 2 s 1

[M_b +-_Kbb--(MiSb-r---_XXib) I J.v.tii'-1----4---txii ) t*,.ib +----_Kib)]-

(24)
It follows that:

[B_(M8 +--4 )-1BSr]-I = [[O I] AibAiT{° A_bAibJ] ]-1 = AbbS-1 (25)

17



which implies that:

[BS(M , + At2 K t° )-1B sTl-1
4

s At2 s
= (Mbb + --_-Kbb) -- (M_b + --

At2 At2 s 1 s /kt2 K 8
7 K b)r(M  + -T g")- + -2-

(26)

The right hand side of Eq. (26) above is the Schur Complement matrix associated
At 2 t s

with the subdomain transient operator (M s + --7--K ). Therefore, Eq. (26)
demonstrates that the preconditioning operator:

s=N, - 2 At 2 A4-2
t-I _ s At s At2 s._ 8 s T 8 t..._ s --1

D I = )__ (Mbb+--_-Kbb)--(Mib+--_Kib) (Mii+--_--Kii) (Mib+--_--Kib)
s=l

(27)

•=N° __.__Kt"and the interface operator _t = E BS( Ms + )-IB *r are dual oper-
8=1

ators. Based on this duality and on the mathematical framework presented in

Bjordstad and Widlund [19], it can be shown that away from crosspoints -- that

is, points where more than two subdomains intersect, the preconditioner D I
_t-lNt

is such that the condition number of D I FI is independent of the mesh sizeh.

Moreover, D_ -I is also an intrinsicallyparallelpreconditioner since it involves

only subdomain-by-subdomain independent computations.

5.2 Mechanical interpretation and computational issues

The solution of the interface problem (16) via the PCG algorithm (here with

the dual preconditioner) requires performing at each iteration q the following

computations:

Nt

Multiply p_ = rip _ (main loop of CG)

_t q
Solve Diz b = P_ (preconditioning step)

(28)

Here, pg denotes the search direction computed during the q-th iteration, and

_g denotes the q-th residual which represents the jump of the displacement in-

crements across the subdomain interfaces. All computations summarized in Eqs.
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(28) can be performed at the subdomain level asfollows:

-sq At2 K t" )-1Bsr p_q
Pb = BS( Ms +

At2 s
z_q = [(M_b + ---_---Kbb )

2 2

At KS _TrM s At 1,-s _-x(_s At2 s sq
-- (MSb -4" T ib) _, ii "_- Txxii) ksVXib _- ---_--Kib)]Pb

(29)

The first of Eqs. (29) can be re-formulated as a problem with Neumann boundary

conditions (indicated between braces {}):

, so,. s] ] [ ][ Mii + -T---ii Mib + -'T-*"ib [Plq 0q (30)
LM_b + -_-'-_K_.b M_b + -_--_2K_b LP_' = {pt, }

The solution of this problem p_' represents the trace on the interface boundary

of f_s of the displacement field resulting from prescribing the interface traction
sq

forces Pb •

The second of Eqs. (29) can be re-formulated as a problem with Dirichlet

boundary conditions (indicated between braces {}):

. s ..] [ ][ Mii + -_---_K_i Mib Jr- --T-Kib z i 0

-_ ----_-X_ib Mbb q- ---4-Kbb
(31)

and which can be solved in two steps:

At2 s s q /_'t2 l_s _-s q

Solve (Mini + ---_-Kii)_,i = - (Mi_b + _- _,.ib:r b

At 2_ st. ,, At2Kgb)_
Evaluate z_ q = (Mi_bT +--_-Kib )_'i +(M_b + _-

(32)

Therefore, the preconditioning step reformulated in Eq. (31) corresponds to find-

ing in each subdomain f/s the traction forces that are needed to prescribe the

interface boundary displacement increment jump _,q.

The mechanical interpretation of the CG algorithm with the dual precondi-
_t

tioner D I is straightforward. Within each iteration, a Neumann problem is first

solved: traction forces are applied at the subdomain interfaces, and a jump in

the displacement increments is computed. Next, this computed jump is imposed

at the subdomaln interfaces and new interface traction forces are computed. The
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successiveiterations drive this jump to zeroand upon convergencethe computed
Lagrange multipliers (traction forces) enforcethe inter-subdomain displacement
continuity.

On the computational side, it should be noted that even though the block
(MTi + at __cs--Y---iiJ governing Eq. (30) is embedded in the system governing Eq. (32),

this block is stored and factored twice. The reason is that Eqs. (30) and (32)

have two different optimal numberings for the internal degrees of freedom that

lead to two different matrices. For a small number of subdomains, this drawback
s ,at 2 i4sbecomes a severe issue as the cost of storing and factoring (Mii + -Y---iiJ is

important. For finer mesh partitions, this additional storage and computational

burden becomes less significant as the size of every subdomain and the cost of

factoring (M_i + -_K_i ) becomes negligible when compared to the size of the

global interface problem and the cost of the main CG iterations, respectively. In

particular, if the tangent operator is not reconstructed at each nonlinear iteration,

the computational overhead introduced by the dual preconditioner is acceptable.

However, it should also be noted that an iteration with the dual preconditioner

is more expensive than an iteration with the trace preconditioner as the former

one involves in every subdomain a pair of forward/backward substitutions of sizes

equal to the number of internal subdomain degrees of freedom, while the latter

one involves in every subdomain a matrix-vector product of a size equal to the

number of subdomain interface degrees of freedom.

REMARK 5. Z. 1. Global and/or local symmetry effects such as mesh and material

symmetry, but not necessarily load symmetry, can accelerate the convergence of

the FETI method with the dual preconditioner. For example, in the case of a
_t -1 _t-1

two-subdomain problem, symmetry implies that D/ = 4 F_r , and therefore

the PCG algorithm converges in one iteration.

6. Loss of orthogonality

Matrices with the spectral pattern discussed in Section 3 have been shown

to cause a rapid loss of orthogonality of the direction vectors (Parlett [18]). For

these matrices, increasing the numerical precision does not restore the orthogo-

nality of the search vectors because in this case the propagation of the errors is a

polynomial function of the ratio between consecutive eigenvalues.

The loss of orthogonality of the search directions during the solution of the

interface problem (16) has a disastrous consequence on the rate of convergence of

the PCG algorithm. To remedy this problem, we introduce a reorthogonalization

procedure within the PCG algorithm which however, in order to determine the

new direction vector, entails at each iteration q the following additional burden:
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Nt

(a) the storage of the direction vector pq and the product Flpq.

(b) the evaluation of q dot products of the form rT[Ftsp q] where [FtIpq ] is readily

available and 1 < j < q, and of an nix j matrix-vector product where nz is

the number of interface unknowns.

Clearly, such a reorthogonalization procedure is not feasible if introduced

during the solution via the PCG algorithm of a global finite element problem, as

it would require unreasonable amounts of memory and CPU. However, it is quite

affordable within the context of a domain decomposition algorithm as it applies

only to the interface problem. In particular, the reader should note that the

additional computational costs outlined in (b) are small compared to the cost of

the pair of forward and backward substitutions that are required at each iteration
_t

q of the PCG algorithm in order to evaluate the product Fzpq.

The efficiency of the reorthogonalization procedure discussed above is high-

lighted in TABLE 4 for the four-subdomain bending plate problem introduced in
Section 3.

TABLE 4

Four-subdomain bending plate problem

Algorithm: PCG-FETI

Nt--1 $--_N. At2i_t.)BS TPreconditioner: T I = _ BS(M s + --__.

Convergence criterion: ][E:'(u("_l)AU(_'_11) r (_)- (u.+l)H2 < 10_ 3
iir(u_+_ )112

Multiprocessor: iPSC-860 (4 processors)

h :#: of iterations

(without reorth.)

# of iterations CPU CPU

(with reorth.) (without reorth.) (with reorth.)

! 42 22 5.5 s. 3.7 s.20
! 66 24 33.2 s. 16.5 s.4O

REMARK 6.1. In practice, the number of direction vectors that are stored for

reorthogonalization is determined by the memory space that is available after

all of the other storage requirements of the transient FETI method have been

satisfied. When only a few directions can be stored, a partial reorthogonalization
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is implemented. In this case,the optimal strategy consists in storing the first few

directions instead of the most recent ones, because the subspace generated by the

first directions is closer to the subspace associated with the highest eigenvalues.

At this point, we mention that for many of the realistic structural problems

that we have solved with the FETI method, we have observed that reorthogonal-

ization was necessary for convergence. All of the numerical results presented in

the remainder of this paper were obtained with either partial or full reorthogo-

nalization.

7. Global residual and numerical precision

7.1. Interface v.s. global convergence

At every iteration q of the PCG algorithm applied to the solution of the
_ (k+l)q _ s(_+t) q

interface problem (16), the computed ..+½ and _Un+ ½ verify:

At 2 t • s(_+l)q £lt 2 / s(I,) sT ]k(k4-1)q

(M s+_K )hu,,+½ = -_r +½-B "'n+½ )4 4
s=l,...,Ns (33)

so that:

s (_+Uq At2 At2-t', 1 s(k) At 2 .M s A t2 )(k+l)q
u +½ -- 4 (Ms +_B" )- ra+ ½---_-( +4Kt')-lBSrA

4 "'"+3

(34)

Using (34), the jump in the displacement increments at the subdomain interfaces

can be written as:

s=gs

E ,--_sA s (k+l) q121 LXUn+ ½

where

= -GX + L

$-_ N°

G At2 At2Kt°)-IB _r
-- --_ E B'(M" + 4

s=l

8-_-Nt

L -- At2 At2*'t°'-i s(k)
4 E B_(M_ 4---_4 ) r +½

(35)

From (16) and (35), it is clear that the gradient of the interface problem (16)

is indeed the jump in the displacement increments at the subdomain interfaces.

Therefore, the residual of the interface problem II - GA + LI] gives the order
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of magnitude of the error in II_xun+½II and not the order of magnitude of the

error in the global residual IIK'(u_l) zXu_ ) r(u_i)ll, where _t, (k) ,-- (Un.F1) --

M + _--_-----_Kt. Moreover, since the condition number of _t varies as O(1/h 2) while
_t

the condition number of F I varies as O(1/h), the convergence criterion:

II- GM + LII _< _ II- G_ ° + LII (36)

does not guarantee that:

--t (k) A" (k+l)q r(u(nk+)l)[[< _ IlK (u.+l) Lxu+½ - r(u¢=_)ll (37)IlK (u.+l)_u _, - -t (k) _ (k+_)°
n-t-_

We have observed that for most structural problems, the relative global residual

(37) is typically 102 to 103 larger than the relative interface residual (36), which

clearly indicates that the convergence of the FETI methodology should be based

on the global criterion (37).

Unfortunately, evaluating (37) at every PCG iteration q requires perform-

ing a global matrix-vector multiply in order to compute the global residual

I[Kt(u(_l) A,, (k+l)q - r(u(_l)]]. This would double both the computational
--_n-4-½

and communication costs of a PCG iteration Therefore, we had to develop an es-

timator for the global residual that is accurate and computationally economical.

Using Eq. (12) and the partitioning introduced in Section 5.1, the restriction

of the global residual to every subdomain _2s can be written as:

s At2IK "s _ (A- s(k+l)q A s(k+l)qb)b_t ° (h) /.AAuS(k+l)q r s (k) , (Mib qt_ TXXib) k,...u t -- L.XU , t
K (u_+l) n+½ _ rl, Un+l) -=_ n+-_ bb n.-_

k_ r

A- s (k+_)q _ s(k+Oq is the jump in the displacement increments at thewhere _u _t
n-t-_ bb �kiln+½ bb

IIW[ s ± At21_ s _ [A_ sU*+t)'q
subdomain boundary interface. Clearly, the reaction forces _,.ibTT.,.ib j ,,-., _ --

- n+-_ bb

A. s(k+l) q \u ± 1 ) axe zero except on those degrees of freedom which are connected to the
aT_ bb-

s At 2 s [A,,S(k+l)q
interface ones. Moreover, equilibrium suggests that [[(M_b+ TK,b) _ %,+½ bb--

s At _ s

Au2_') qb,)[I and [[(Mbb+-T-Kbb) (,Au _`k+l)'_ ^ "_'_+') q-_ , _)ll are of the same mag-n + -_ b b n + -_

A s(_+t) q / s(t_)

nitude order, so that one can reasonably approximate II_e (u_(_]) ,,%+½ - rtun+_)ll
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asfollows:

IlK (".+1/_u
2

. .(_))lie.,- r(u.+ 1

At 2
_^. s(,+l)q _-:_+')q )11= II(Mgb+ 7 sgb)'_u , --" n+-_ bb T-_ bb

At2KS)BSV (A..S(_+_)q _ Au .(_+l)qIIB'(M'+ _11
4 \ --n+½ bb n+_ bb/,,

(39)
From (35) and (19) it follows that:

Un+½
At2 t'_-l/ s (_)

- At24 BS(MS +--_K j (rn+ ½

= At2_s q
4

In assembled form, the above estimator becomes:

BsT) (k+l)q't

"'n+½ )

(40)

IIg'(u(_l) A (k+l)ql ( _'(k)+lest__u - r,u.-1, ,

S= N s

At2 At2 At2 t' )-l/rS(k) RsT]k(k+l
-- 4 E BS(MS + --_-KS)BsT( Ms +---_--g t n+½ --- "'n+½)q)

s----1

= At2_s q
4

which in view of Eqs. (19-20) can be written as:

(41)

_t (k) A,,(k+l)q
IIg (u_+l)--.+½

(k) lest At 2 - At 2 _t-t
-- r(Un+l)l. .., = --Z _ TI

4 4 _q (42)

Therefore, we replace the convergence criterion (37) with:

z q < _ z °

that is:

_t -1 t_l
TI _q _< _ T1 _0

(43)

Clearly, if the trace preconditioner is used, the proposed estimator for the global

residual does not require any additional computation.
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The discrepancybetweenthe interface and global residualsand the accuracy
of the proposedglobal residual estimator aredemonstratedin FIG. 6 for the four
subdomain bending plate problem with h = i/40 (Section 3).

Four-subdomain bending plate problem
h=1/40

10 20 30 40 50 60 70 80

fteration number

ResiduaJs(Log(2-norm))

globar

o- -- -- -- -- interface

x .......... estimated

FIG. 6 Accuracy of the global residual estimator

7.2. Setting the tolerance for the PCG algorithm

Let dn+l, k k )_un+x, and (un+ 1 denote respectively the exact solution of the

nonlinear problem (1) at time step n + 1, the exact solution of the linearized

problem at the k-th nonlinear iteration of time step n + 1, and the PCG solution

of the linearized problem at the k-th nonlinear iteration of time step n + 1. Our

stopping criterion for the PCG algorithm is:

_t (k) An(k+l)q _ (k) _t (k) (nk:;)0 , (k)IlK (u,,+l)--.+_ - rtu,,+,)ll _<_ IlK (%+,)_u - r_u,,+l)ll (44)

where q denotes the PCG iteration number. It follows that:

I (! k+l ,oo . k+l II k,--,,+aJ -,,,,+11. _<_ I1%+1-d,,+111 (45)
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On the other hand, a "Newton-like" method implies that:

. k+l ipIn.+1 O.+lt] _< C l k-- lUn+l -- dn+ll (46)

where C is a real constant, and p is an integer describing the rate of convergence

of the "Newton-like" method. For example, p = 2 for the Newton-Raphson algo-

- 1.618 for the Secant method [20]. From the triangularrithm, and p = 2 -

inequality for norms and from (45-46) we deduce:

k+l oo k ipII(u.+l) d.+ ll _< , Ilu.+l d.+lll + C '- - IlUn+l - dn+ll (47)

Therefore, if we desire that I]{''/+1 .c__",,+]) --d_+l]l _< _, it suffices to take e = _.

For p = 2 (Newton-Raphson) this leads to e = v/'_, and for p = 1.618 (Secant),
this leads to e = e-°'61s.

In the sequel, we fix _ = 10 -6 . Therefore, we choose e = 10 -4 , which

accommodates both the Newton-Raphson and Secant methods.

8. Serial performance analysis and numerical H non-scalability

8.1 Nonlinear transient analysis of a space antenna connector

As a first large-scale example, we consider the nonlinear transient analy-

sis of a mechanical joint designed for connecting three space antennaes. The

corresponding finite element (FIG. 7) mesh contains 11284 nodes, 21888 3-node

shell elements with 6 d.o.f, per node, and a total of 67704 d.o.f. The time

step At is chosen as T3/15 = 0.0123s., where T3 denotes the third fundamental

period of the structure. After the nodes are renumbered with the Reverse Cuthill-

McKee (RCM) scheme [21], the average column height of the skyline of the un-
At _ t

decomposed matrix (M + --T-K ) is 616 and its envelope size is 41,674,976. All

computations discussed in this section are carried out on a CRAY Y-MP proces-

sor, and all performance results are reported for the solution of the displacement

increments (Eqs. (12)) in one nonlinear step.
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FIG. 7 Finite element discretization of a space antenna connector

(#ore a fine_me_h)

8.2 Reference serial performance results

First, performance results are reported for the direct method (LDL T factor-

ization) and the CG algorithm with diagonal scaling (Jacobi-PCG) applied to the

un-decomposed problem (TABLE 5). These results will later serve as reference

serial performance results. Memory consumption is measured in millions of 64

bit words (MW). MFLOPS (Million FLoating-point OPerations per Second) are

reported in order to distinguish and independently assess the numerical and im-

plementational performances. A sparse data structure is used for the Jacobi-PCG

algorithm.
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TABLE 5

Space antenna connector - Reference serial performance results

67704 equations - At --- _ -- 0.0123s.

gttu(k) _ An(k+1) r_u (k) _
II _ n-I-tJ _'_ n-I-1 -- _, n+11112

Convergence criterion for Jacobi-PCG: iir(u_+) )112 _< 10 -4

CRAY Y-MP (single processor)

algorithm memory # of iterations MFLOPS CPU

direct (LDL T) 42 MW 1 220 253.0 s.

3acobi-PCG 4.2 MW 3320 80 345.6 s.

It is interesting to note that for the above problem, the direct method on the

CRAY Y-MP outperforms the 3acobi-PCG algorithm essentially because it vec-
torizes better. The MFLOP rate of LDL T is 2.75 times better than that of

Jacobi-PCG, but its solution time is only 1.36 times faster.

8.3 FETI performance results

Next, we report on the performance results of the FETI method with the

trace (TABLE 6) and dual (TABLE 7) preconditioners, for various numbers of

subdomains. The growth of the interface problem with the number of subdomains

is depicted in FIG. 8. All local subdomain problems are solved using the same

implementation of the LDL T algorithm as in the un-decomposed case (TABLE

5). FAC designates the computational phase where the subdomain operators are

factored. All mesh partitions are obtained using the mesh decomposer described

in Farhat [22].
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Space antenna connector

67704 equations

4 8 16 32

Number of sub0omains

64

FIG. 8 Growth of the interface problem

Interface size

# of equalions

TABLE 6

Space antenna connector- FETI(_'t, -') serial performance result,

67704 equations - At = T_a = 0.0123s.
15

Preconditioner: T! =
s=l

B'(M" + -_---_=Kt" )B "T

Convergence criterion:

_t

IlK tu (k) _ AU(_ +1)- (k), .+,, r(u.+1)ll2 < 10 -4
iir(u(_)ll2

CRAY Y-MP (single processor)

Ns memory CPU MFLOPS _ of itr. CPU /itr. CPU MFLOPS CPU

FAC FAC PCG PCG PCG TOT

4 18 MW 19.0 s. 165 159 0.43 s. 68.4 s. 130 87.4 s.

8 16 MW 13.6 s. 150 200 0.39 s. 78.0 s. 110 91.6 s.

16 12 MW 9.6 s. 130 267 0.36 s. 96.1 s. 105 105.7 s.

32 10 MW 6.7 s. 105 456 0.34 s. 155.0 s. 90 161.7 s.

64 9 MW 5.0 s. 85 717 0.33 s. 236.6 s. 75 241.6 s.
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TABLE 7

Nt-1

Space autenna connector- FETI(DI ) serial performance results

67704 equations - At = _ = 0.0123s.

Preconditioner: D r

Convergence criterion:

s=N, At, Kt,)_IBsT]_ 1= Z [BS( M_ +-T-

ttU(k) _ AU(_+I) rcu (k)
II t ,tl) ,tl - t _IplI_

llr(u(_1))(_ _ 10 -4

CRAY Y-MP (single processor)

Ns memory CPU MFLOPS _ of itr. CPU /itr. CPU MFLOPS CPU
FAC FAC PCG PCG PCG TOT

4 31 MW 19.0 s. 165 111 .77 s. 85.5 s. 130 104.5 s.

8 26 MW 13.6 s. 150 141 .70 s. 98.7 s. 110 112.3 s.

16 20 MW 9.6 s. 130 194 .65 s. 126.1 s. 105 135.7 s.

32 15 MW 6.7 s. 105 381 .61 s. 232.4 s. 90 239.1 s.

64 12 MW 5.0 s. 85 595 .60 s. 357.0 s. 75 362.8 s.

Several observations axe worthy discussing:

As expected, the FETI method with the dual preconditioner requires more

memory than the FETI method with the trace preconditioner. On the other

hand, the FETI method with the trace preconditioner offers substantial mem-

ory savings over the global direct method.

The computational cost of both FETI algorithms is dominated by the solu-

tion of the interface problem via the PCG method, especially for fine mesh

partitions. When the number of subdomains is increased, the subdomain

vectors become shorter and the MFLOP rate of the PCG algorithm on the

CRAY Y-MP deteriorates. This MFLOP rate is slightly higher than that of

the Jacobi-PCG algorithm for the undecomposed problem (TABLE 5) but is

only half as high as that of the global direct method (TABLE 5). Therefore,
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the total CPU timings reported in TABLES 6-7 highlight the intrinsic com-
putational superiority of the FETI methodology over both the direct and
Jacobi-PCG global algorithms. In the best case(4 subdomains), the FETI
method with the trace preconditioner is three times faster than the global
direct solver and four times faster than the global Jacobi-PCG algorithm.

The dual preconditioner reducesthe number of iterations performed by the
trace preconditioner by a factor of 1.4 in the [4-16] subdomains range, and
by a factor of 1.2 in the [32-64]subdomainsrange. However,a CG iteration
with the dual preconditioner is 1.8times moreexpensivethan a CG iteration
with the tracepreconditioner, sothat the trace preconditioner is overall more
efficient.

The performance of both FETI algorithms deteriorates when the number
of subdomain is increased(FIG. 9). We refer to this phenomenon as the
numerical H non-scalability of the FETI methodology, Clearly, the super-

convergence behavior discussed in Section 3 seems to disappear in the case

of fine mesh partitions and the number of iterations seems to grow linearly

with the interface size (FIG. 8). However, the reader should note that for

the above structural dynamics problem, increasing the number of subdo-

mains from 4 to 64 increases the number of iterations by a factor of 4.5, but

increases the CPU time by a factor of 2.7 only (TABLE 6). This is because

the cost of a PCG iteration decreases with the size of a subdomain. More-

over, since the vector speed drops from 130 MFLOPS in the 4 subdomain

case to 75 MFLOPS in the 64 subdomain case, increasing the number of

subdomains from 4 to 64 actually increases the operation count of the FETI

method by a factor of 2.7 x 75/130 - 1.6 only.
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Space antenna connector

67704 equations - Delta t = T3/15 = 0.0123 s.
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cJ- ...... Jacobi-PCG

FIG. 9 Highlighting the H non-scalability

9. Performance results

The FETI methodology, the CG algorithm with diagonal scaling (Jacobi-

PCG), and the LDL T direct method are implemented on both a CRAY Y-MP/8

and an iPSC-860/128 parallel processors. Different optimal data structures are

used for these different algorithms. All mesh partitions are obtained using the

mesh decomposer described in [22].

On both parallel processors, the Jacobi-PCG algorithm is implemented in

a subdomain-by-subdomain rather than element-by-element fashion in order to

perform fewer floating-point operations. Within each subdomain, the transient

tangent operator is assembled in sparse format.

The implementation of the direct method on the CRAY Y-MP/8 multipro-

cessor is described in Farhat [23]. The parallel skyline solver implemented on

the iPSC-860/128 system is an improved version of the parallel LDL T algorithm

presented in Farhat and Wilson [24]. In this improved version, a ring rather than
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a tree communication algorithm [25] is used for broadcasting at each factorization

step the pivotal column to all of the processors. The distributed data structure

described in [24] is augmented with a pointer array that identifies the last active

column of each structural equation. On the CRAY Y-MP/8 system, the forward

and backward substitutions are serialized. On the iPSC-860/128 multiprocessor,

only the backward substitution is serialized. These serializations are performed

because of well-known mapping, synchronization, and communication bottlenecks

in the parallel solution of skyline triangular systems [23, 24].

The performances of the above parallel solvers are assessed with the nonlin-

ear transient analysis of two structural systems: (a) the space antenna connector

described in Section 8.1, and (b) a stiffened wing panel from the V22 tiltrotor

aircraft (based on the panel described in Davis, Krishnamurthy, Stroud and Mc-

Cleary [26]) (FIG. 10). The finite element model depicted in FIG. 10 contains

9486 nodes, 9136 4-node shell elements with 6 d.o.f, per node, and a total of

54216 d.o.f.

FIG. 10 Finite element discretization of a _qtiffened wing panel
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For both structural problems, the time step At is set to T3/15, where 7"3 is

the third fundamental period of the structure. This choice for At is reasonable for

implicit schemes and leads to significantly larger time steps than those imposed

by the Courant stability condition on explicit schemes (TABLE 8).

TABLE 8

Time step comparisons

problem explicit implicit

space antenna connector

stiffened wing panel

It is important to note that the condition number of the interface problem
_t s=N,

Ft = _ B'( Ms + zxt_4"-ICt°)-IB sT strongly depends on the time step At. For
s_l

Nt

a sufficiently small time step, F I is "mass dominated" and therefore is rela-

tively well-conditioned. For larger time steps such as those selected for the above
_t

two applications (TABLE 8), F I is "stiffness dominated" and is relatively ill-
conditioned.

9.1 Performance results on the CRAY Y-MP/8 system

The performance results measured on the CRAY Y-MP/8 system for both

structural problems are summarized in TABLES 9-10. The number of subdo-

mains Ns is set equal to the number of processors Np. Samples of the deformed

configurations are shown in FIG. 11-12.
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For both structural problems, the time step At is set to T3/15, where T3 is

the third fundamental period of the structure. This choice for At is reasonable for

implicit schemes and leads to significantly larger time steps than those imposed

by the Courant stability condition on explicit schemes (TABLE 8).

TABLE 8

Time step comparisons

problem explicit

space antenna connector

stiffened wing panel
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implicit

1;23 10 -2 s.
_t.79 10 -3 s.
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N t /

a sufficiently small time step, F I is/_mass dominated" and therefore is rela-

tively well-conditioned. For larger ti_,_ie steps such as those selected for the above

two applications (TABLE 8), F_/_s "stiffness dominated" and is relatively ill-

conditioned. /

9.1 Performance results on�the CRAY Y-MP/8 system

The performance re/stilts measured on the CRAY Y-MP/8 system for both

structural problems .ar/e' summarized in TABLES 9-10. The number of subdo-

mains Ns is set equM//to the numbS:l: processors Np. Samples of the deformed



TABLE 9

Space antenna connector - performance results on the CRAY Y-MP/8 system

67704 equations - At ----1-_ = 0.0123s.

_t-I .s----Nj
At 2

FETI preconditioner: T I = _ BS(M s + --TKC)B sr
8----1

Nt (k) AU(h+ l) ,_,,(_) _lt
Convergence criterion: IlK (u,+l) _+1 -*_,-,+1j))2 < 10_ 4

lir(u(_,)ll,

Np N8 # of itr. # of itr. CPU CPU CPU

FETI Jacobi-PCG FETI Jacobi-PCG direct

1 1 -- 3320 -- 345.6 s. 253.0 s.

4 4 159 3320 24.3 s. 93.9 s. 70.3 s.

8 8 200 3320 13.7 s. 50.2 s. 39.5 s.

TABLE 10

Stiffened wing panel - performance results on the CRAY Y-MP/8 system

54216 equations - At -- T.T_a_ 0.00179s.
15 --

FETI preconditioner: T I =
s----1

BS(M 8 -I- %Kt°)B _r

Convergence criterion: II--t(u'_+x)_:(_)
_U(h+1)_rru(k)

,,+1 _ ,_+1/I _ 10-4

iir(u(_)ll_

Np N, # of itr. # of itr. CPU CPU CPU

FETI Jacobi-PCG FETI Jacobi-PCG direct

1 1 -- 4775 -- 418.6 s. 259.7 s.

4 4 300 4775 36.5 s. 114.0 s. 72.1 s.

8 8 396 4775 20.9 s. 60.8 s. 40.6 s.
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FIG. 11 Sample of the transient response of the space antenna connector

FIG. 12 Sample of the transient response of the stiffened wing panel
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All algorithms are reported to achievegood speed-ups. This is essentially because

the CRAY Y-MP/8 system has a shared memory and a relatively small number

of processors. For the antenna connector problem, the FETI method is shown to

outperform the direct solver by a factor of three and the Jacobi-PCG algorithm

by a factor of four. The wing panel structure apparently generates a stiffer

problem: the FETI method converges with a larger number of iterations than for

the connector problem, but still outperforms the direct solver by a factor of two

and the Jacobi-PCG algorithm by a factor of three.

9.2. Performance results on the iPSC-860/128 multiprocessor

The performance results measured on an iPSC-860/128 Touchstone Gamma mul-

tiprocessor are summarized in TABLE 11 for the antenna connector problem and

in TABLE 12 for the wing panel problem. A minimum of 32 and 64 processors are

needed to accommodate the memory requirements of the FETI method and the

direct solver, respectively. Our current implementation of the FETI algorithm on

on this parallel processor allows only one processor per subdomain. Therefore,

it is important to note that the FETI methodology is benchmarked here in the

worst conditions, given that its intrinsic performance deteriorates in the presence

of large numbers of subdomains (Section 8.3).

TABLE 11

Space antenna connector - performance results on the iPSC-860/128 system

67704 equations-At =T_a_ 0.0123s.
15 --

Nt-1

FETI preconditioner: T/
O_ N m

= E Bs( M" + -_-'-_Kt') BSr
8----1

gttu{_) _ AU(k+ l) r_u (k)

Convergence criterion: _ _ .+1, .+1 - _ .+1J,12 < 10_4

iir(u(_)ll2

Np N8 # of itr. # of itr. CPU CPU CPU

FETI Jacobi-PCG FETI Jacobi-PCG direct

32 32 456 3320 144.0 s. 229.4 s. --

64 64 717 3320 144.1 s. 144.8 s. 943.3 s.
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TABLE 12

Stiffened wing panel - performance results on the iPSC-860/1_8 system

54216 equations - At = T_a = 0.00179s.
15

Nt-1

FETI preconditioner: T I
s=N, At 2

= E B*( M8 +"T-Kt') BSr
8----1

Convergence criterion: IIg'lu(k) _ AU(_+I)--r(u(_I)II2, .+l, ._1 < 10-4

iir(u_+)l)ll2

Np N8 # of itr. # of itr. CPU CPU CPU
FETI Jacobi-PCG FETI Jacobi-PCG direct

64 64 705 4775 145.0 s. 227.0 s. 776.2 s.

128 128 1128 4775 136.4 s. 160.9 s. 845.4 s.

For the space antenna connector problem, the FETI method is 1.6 times faster

than the Jacobi-PCG algorithm for 32 processors and 32 subdomains, and 6.5

times faster than the direct solver for 64 processors. For the stiffened wing panel

problem, the FETI method is also 1.6 times faster than the Jacobi-PCG algorithm

for 64 processors arid 64 subdomains, and 5.4 and 6.3 times faster than the direct

solver for 64 and 128 processors, respectively. However, for 128 processors and

subdomains in the second problem, the FETI method is only 18% faster than the

Jacobi-PCG scheme. This is partly because the superconvergence phenomenon

disappears in the presence of fine mesh partitions, and partly because when the

mesh size h is kept constant and the number of subdomains is increased, the

local problems become smaller and the interface problem becomes larger, and

the FETI method with a trace preconditioner converges towards a Jacobi-PCG
scheme.

The parallel direct solver exhibits poor performance results for both struc-

tural problems. This is essentially because the bandwidth of the system of equa-

tions associated with each problem is out-of-balance with the number of proces-
_t

sors needed to store K in a distributed skyline format. We remind the reader

that the parallelism in direct skyline solvers scales with the bandwidth of the
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problem and not with its size. Table 13 reports the repartition of the CPU tim-

ings between compute, send and receive, for both the FETI method and parallel

direct solver.

TABLE 13

Sp_ce antenna co,_nector - co,rip,re ,_.8. send _.s. recei,_e on _he {PSC-860/1_8 system

algorithm Np compute send receive dot product total CPU time

_t--I

FETI (T z ) 64 91.1 s. 1.0 s. 9.0 s. 43.0 s. 144.1 s.

direct (factor) 64 54.4 s. 50.7 s. 623.0 s. -- 728.1 s.

direct (forward) 64 1.4 s. 0.1 s. 20.0 s. -- 21.5 s.

direct (backward) 64 0.4 s. 1.3 s. 192.0 s. -- 193.7 s.

direct (total) 64 56.2 s. 52.1 s. 835.0 s. -- 943.3 s.

Clearly, the elapsed CPU time reported for the parallel direct solver is essentially

spent in synchronization and interprocessor communication. On the other hand,

the FETI method is shown to be communication efficient. The dot products

performed during the solution of the interface problem are timed separately be-

cause they axe implemented via calls to the iNTEL system routine gdsum. We

could not evaluate the repartition of these timings between compute, send and

receive. If we can assume that they are equally distributed between computation

and communication, then we can conclude that only 21.8% of the total CPU

time reported for the FETI method is spent in synchronization interprocessor
communication.

The performance results summarized in TABLES 9-13 also demonstrate that

the iPSC-860/128 Touchstone Gamma multiprocessor cannot compete with the

CRAY Y-MP/8 system as far as direct solvers are concerned. However, for

explicit-like computations such as those characterizing the FETI and Jacobi-PCG

algorithms, 32 processors of the iPSC-860/128 system are shown to outperform

one CRAY Y-MP processor.

10. Circumventing the numerical H non-scalability

The H non-scalability property characterizing the FETI methodology and

discussed in Section 8 requires keeping the number of subdomains relatively small

in order to obtain the best possible performance. However, increasing the num-

ber of subdomains while keeping the mesh size constant seems a priori attractive

because: (a) it reduces the cost of the local problems, and (b) it also reduces the
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cost per iteration of the interface problem. Nevertheless,the results reported in
TABLE 6 clearly indicate that refining beyond a certain number of subdomains
the mesh partition doesnot significantly reduce any further the computational

costs of neither the subdomain nor the interface problems. This can be explained

by the fact that when the number of subdomains is increased, the subdomain

bandwidth which governs the computational costs of both the subdomain and

interface problems does not decrease as fast as the subdomain size. As an exam-

ple, consider the N x N x N uniform discretization of a cubic region. A uniform

mesh partitioning of this volume produces Ns subdomains each containing N 3/Ns

nodes and each having a local bandwidth equal to N2/N 2/3 (assuming 1 d.o.f, per

node). If the number of subdomains Ns is increased, the size of each local problem

decreases as N71 while its local bandwidth decreases as N_ -2/3. Therefore, even

strictly from a computational complexity viewpoint and independently from rate

of convergence considerations, it is not necessarily advantageous to introduce a

large number of subdomains.

With the advent of massively parallel processors, the above discussion im-

plies that one should allocate more than one processor to a given subdomain.

The benefits of this strategy are illustrated in TABLE 14 for the space antenna

connector problem. For 4 subdomains and 8 processors, the elapsed CPU time

for the FETI method on the CRAY Y-MP/8 multiprocessor is 11.2 seconds, down

from 13.7 seconds for 8 subdomains and 8 processors. Of course, significantly bet-

ter performance improvements can be expected for the range [32-128] processors

on the iPSC-860/128 system.

TABLE 14

Space antenna connector - circumventing the H non-scalabitity of FETI

67704 equations - At = T_a _ 0.0123s.
15 --

1 s= N_
At 2 t s 8 T

Preconditioner: @¢I- = _ Bs( M8 + -i-K )B
s=l

Convergence criterion: IIK'_u(h) _ au(_+l) r'u(k_ '", .+t, .+1- t .+lJtt_ < 10_4
iir(u_l)lt 2

CRAY Y-MP/8

Np N8 # of itr. CPU

1 4 159 87.4 s.

4 4 159 24.3 s.

8 4 159 11.2 s.
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11. Closure

A memory efficient domain decomposition (DD) method for implicit tran-

sient dynamics has been presented. It is based on the concept of Finite Element

Tearing and Interconnecting (FETI) developed by Farhat and Roux [8]. Two

subdomain-by-subdomain preconditioners with direct mechanical interpretations

have been formulated. The first preconditioner, called here a trace precondi-

tioner, is constructed as the sum of the projections on the subdomain interfaces

of the inverses of the subdomain transient operators. The second preconditioner,

called here a dual preconditioner, is constructed as the sum of the exact inverses

of the subdomain transient operators. When preconditioned with the trace oper-

ator, the interface problem behaves as if its condition number is independent of

the mesh size. When preconditioned with the dual preconditioner, the interface

problem has a condition number that is independent of the mesh size. Therefore,

from a mathematical viewpoint, the dual preconditioner is optimal. However, the

interface preconditioner is cheaper and computationally more efficient. For coarse

mesh partitions, we have shown that the proposed FETI method can outperform

on the CRAY Y-MP/8 multiprocessor the parallel direct solver and the parallel

conjugate gradient algorithm with diagonal scaling by factors of 3 and 4, respec-

tively. For fine mesh partitions, say more than 32 subdomains, the performance

of the FETI algorithm degrades -- and this is the case for most DD methods.

Therefore, when working with a massively parallel processor, we recommend to

keep the number of subdomalns as small as possible and allocate more than one

processor per subdomain. However, even in the worst case of one processor per

subdomain, the FETI method still outperforms the parallel direct solver on the

iPSC-860/128 system because of its low communication costs. Finally, the results

we have reported for two realistic structural dynamics problems indicate that 32

processors of an iPSC-860 Gamma system can outperform a CRAY Y-MP pro-
cessor.
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